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Abstract. A transfer matrix approach is presented for the study of electron conduction in an
arbitrarily shaped cavity structure embedded in a quantum wire. Using the boundary conditions
for wave functions, the transfer matrix at an interface with a discontinuous potential boundary
is obtained for the first time. The total transfer matrix is calculated by multiplication of the
transfer matrix for each segment of the structure as well as numerical integration of coupled
second-order differential equations. The proposed method is applied to the evaluation of the
conductance and the electron probability density in several typical cavity structures. The effect
of the geometrical features on the electron transmission is discussed in detail. In the numerical
calculations, the method is found to be more efficient than most of the other methods in the
literature and the results are found to be in excellent agreement with those obtained by the
recursive Green’s function method.

1. Introduction

Recent advances in nanometre-scale lithography and atomic-layer epitaxy have attracted
much attention to the studies of mesoscopic systems, especially after the discovery of
the quantized conductance phenomenon [1, 2]. A large amount of both experimental and
theoretical research on ballistic electron transport in quantum waveguides with various
configurations has been reported over the past few years [3–15]. Several theoretical
and numerical methods, such as the mode-matching method [4–6], the recursive Green’s
function method [7, 8], the transfer matrix approach [12–15] and the time-dependent
approach [9, 10], have been extensively used for the investigation of electron conduction
in quantum waveguides. Most of the methods have become well established, except the
transfer matrix method. To the best of our knowledge, the transfer matrix at an interface
with a discontinuous potential boundary has not been obtained by any authors, which
limits the generality of the transfer matrix method. Only Wuet al [14] have developed
a transfer matrix method, which can only be applied to the case of a structure with simple
geometry. Xu [13] also made use of a transfer matrix method to investigate the electron
wave propagation through a quantum wire with auniform width under an inhomogeneous
external potential. So further study of whether the transfer matrix method can be applied to
investigate transport properties in complicated geometries is merited. In real electron wave-
guides where the boundaries are defined via electrostatic confinement from metal gates the
geometries are complicated; hence, the study of realistic waveguide structure is very much
necessary, though many fundamental transport properties have been found in the study of

0953-8984/96/203635+11$19.50c© 1996 IOP Publishing Ltd 3635



3636 Wei-Dong Sheng and Jian-Bai Xia

idealized structure. In this paper, we have proposed a transfer matrix method in which the
transfer matrix at an interface with a discontinuous potential boundary is obtained. The
total transfer matrix is evaluated by multiplication of the transfer matrix for each segment
of the structure and by numerical integration of coupled second-order differential equations.
We make use of the two methods to study several typical cavity structures and investigate
the influence of the geometrical features on the electron wave propagation.

2. General formalism

We start from the two-dimensional Schrödinger equation written as[
− h̄2

2m∗

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (x, y)

]
9(x, y) = E9(x, y) (1)

where m∗ is the electron effective mass,E is the electron energy and9(x, y) is the
electron wave function.V (x, y) represents a confining potential. Here, we assume hard-wall
confinement for simplicity though it is not difficult to treat other confining potentials.

Figure 1. A plan view of the cavity structure embedded in a quantum wire. The width of the
wire is W and the longitudinal length of the cavity isL.

The cavity structure is defined byYL(x) < y < YU(x) and 0< x < L as shown in
figure 1. In the regions wherex < 0 andx > L we assume that the quantum wire is a
straight line parallel to thex-axis, and the wave functions are written as

9A(x, y) =
N∑

n=1

(
aA

n eiKnx + bA
n e−iKnx

)
sin

(nπ

W
y
)

9B(x, y) =
N∑

n=1

(
aB

n eiKnx + bB
n e−iKnx

)
sin

(nπ

W
y
) (2)

whereKn is the longitudinal wave number and satisfies

h̄2K2
n

2m∗ + h̄2

2m∗
(nπ

W

)2
= E. (3)

The sum overn includes evanescent modes for which the wave numberKn is imaginary.
N represents the number of states involved in the electron transport.

In the transfer matrix form, the coefficientsaA
n , bA

n andaB
n , bB

n are related by a transfer
matrix M: [

Aa

Ab

]
= M

[
Ba

Bb

]
=

[
M1 M3

M2 M4

] [
Ba

Bb

]
(4)

whereAa, Ab, Ba, andBb are one-column matrices with elementsaA
n , bA

n , aB
n , andbB

n resp-
ectively. The transfer matrixM is a 2N -by-2N matrix which transforms and mixes the
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modes in the regions A and B [14]. If the region B is the output lead, all elements ofBb

must vanish since it represents backward-going waves. Thus, equation (4) becomes

Aa = M1Ba

Ab = M2Ba.
(5)

Once the matricesM1 and M2 are known, the transmission amplitudet and reflection
amplituder can be calculated easily. For example, supposing electrons propagate in the
ground transverse mode of the quantum wire, the matricesAa, Ab, and Ba can be written
as follows:

Aa =


k

−1/2
1
0
...

0

 Ab =


r11k

−1/2
1

r21k
−1/2
2
...

rn1k
−1/2
n

 Ba =


t11k

−1/2
1

t21k
−1/2
2
...

tn1k
−1/2
n

 . (6)

Since all elements ofAa are known, Ba and Ab can be calculated successively from
Ba = M−1

1 Aa andAb = M2Ba. Then the scattering amplitudest andr can be obtained, and
the conductanceG can be evaluated using the two-probe Landauer–Büttiker formula [16, 17]

G = 2e2

h
|t11|2. (7)

Current conservation requires that the unitarity condition be satisfied,|t |2 + |r|2 = 1. This
will serve as a check of numerical calculations. If the electron energy is larger than the
second transverse energy level, then we should calculatetij and rij (i, j = 1, 2). The
total transmission amplitude equals

∑
i,j |tij |2, and the total reflection amplitude equals∑

i,j |rij |2. The unitarity condition is∑
i

[|tij |2 + |rij |2
] = 1 for j = 1, 2.

In the following section, we will give two methods for calculating the total transfer matrix.

3. The transfer matrix method

At first we calculate the transfer matrix at an interface with a discontinuous potential
boundary. As a check, we calculated the transmission amplitude for the well-known T-
shaped structure, which has been studied by the Green’s function method [8] and the
mode-matching method [14]. Wuet al [14] solved the Schr̈odinger equation directly as
a mode-matching problem, and gave the transfer matrix for the whole T-shaped structure.
Here we give the transfer matrices for both ends of the structure,Ml andMr , and the total
transfer matrixMT is a product of three parts:

MT = MlMmMr (8)

whereMm is the transfer matrix for the middle region, which is easily given.
The continuity of the wave function at a discontinuous boundary requires that

N∑
n=1

(ak
n + bk

n)

√
2
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y

)
(9)
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where the indicesk and k + 1 refer to the left-hand and right-hand sides of the end, and
Dk andDk+1 are the widths of the channels. Similarly, matching the first derivatives of the
wave functions at the end gives

N∑
n=1

Kk
n(ak

n − bk
n)

√
2

Dk

sin

(
nπ

Dk

y

)
=

N∑
n=1

Kk+1
n

(
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n − bk+1
n

) √
2

Dk+1
sin

(
nπ

Dk+1
y

)
.

(10)

Kn is the wave vector as defined in equation (3).
There are two cases:Dk+1 > Dk for the left-hand end, andDk+1 < Dk for the right-hand

end. ForDk+1 > Dk we multiply both sides of equation (9) by
√

2/Dk+1 sin((mπ/Dk+1)y),
integrate from zero toDk+1, and obtain

N∑
n=1

(ak
n + bk

n)Snm = ak+1
m + bk+1

m (11)

where

Snm = 2√
DkDk+1

∫ Dk

0
sin

(
nπ

Dk

y

)
sin

(
mπ

Dk+1
y

)
dy (12)

and the upper limit of the integration is taken asDk instead ofDk+1 because in the region
Dk+1 > y > Dk the wave function of the left-hand side (denoted byk) equals zero.

We must be cautious in integrating equation (10). If we multiply both sides by√
2/Dk+1 sin((mπ/Dk+1)y), and integrate from zero toDk+1, which is just the same as

the way in which we treat equation (9), it implies that the derivative of the wave function
in the regionDk+1 > y > Dk is also zero. This will not give a correct result and the
calculated transmission amplitude always equals unity. So we should multiply both sides
of equation (10) by

√
2/Dk sin((mπ/Dk)y), integrate from zero toDk, and obtain

Kk
m(ak

m − bk
m) =

N∑
n=1

SmnK
k+1
n

(
ak+1

n − bk+1
n

)
. (13)

We can rewrite equations (11) and (13) using the matrix form equation (4) and obtain the
matrix

Ml = 1

2

[
M+ + M− M+ − M−

M+ − M− M+ + M−

]
(14)

whereM+ = (ST)
−1 andM− = (Kk)

−1SKk+1. S is the matrix with elementsSnm as defined
by equation (12);Kk is the column vector with elementsKk

n . Similarly we can obtain the
transfer matrixMr for the right-hand end, and the total transfer matrixMT . Our results are
completely consistent with those obtained by the mode-matching method [14].

In order to obtain the transfer matrix for a structure of arbitrary shape, we divide the
plan-view pattern of the structure into segments as shown in figure 2. For each segment we
obtain a transfer matrixMk, and the total transfer matrix is a product of all theMks:

M =
∏
k

Mk (15)

where

Mk = 1

2

[
M+ + M− M+ − M−

M+ − M− M+ + M−

] [
P− 0
0 P+

]
(16)

(P−)nm = e−iKk+1
m dδnm (17)
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Figure 2. Coordinates of the calculation.

(P+)nm = eiKk+1
m dδnm. (18)

P− andP+ are the transfer matrices in the segment;d is the width of the segment.
Although the slicing of the waveguide region into finite elements is not a new idea in

the studies of ballistic transport in mesoscopic systems and is often used in treating disorder
effects in a quantum wire with uniform width [13], we should note that this technique is
seldom used to treat structure with complicated geometry. The technique is also usually
used in the recursive Green’s function method which is based on the tight-binding model.
The slicing of a quantum wire with uniform width into finite elements would not change
the boundaries of the structure while the application of the technique to a structure with
complicated geometry would certainly change the boundaries. As we know that the electron
transmission is dependent on the geometrical features of the waveguide, whether or not the
slicing technique can be applied to the complicated geometries is a problem left unsettled.
In section 5, we will check our method by comparison of the results with those obtained
by the numerical method proposed in the next section and the recursive Green’s function
method.

4. The numerical method

Besides the method proposed in the last section, there are other methods [12, 14, 15] for
evaluating the total transfer matrix method not via the definition of the transfer matrix.
These methods are usually called numerical methods not transfer matrix methods. In this
section, we propose a numerical method for evaluating the total transfer matrix by numerical
integration of coupled second-order differential equations. The numerical method requires
that the two boundary functionsYL(x) and YU(x) be continuous, and that their first and
second derivatives with respect tox exist.

In the interior cavity, the wave function takes the following form [12] for 0< x < L:

9C(x, y) =
N∑

n=1

fn(x)8n(x, y) (19)

where

8n(x, y) = sin

[
nπ

d(x)
(y − YL(x))

]
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andd(x) = YU(x) − YL(x). Insertion of the above equation into equation (1) gives
N∑

n=1

[
8n(x, y)

d2fn(x)

dx2
+ 2

∂8n(x, y)

∂x

dfn(x)

dx
+ ∂28n(x, y)

∂x2
fn(x)

]

=
N∑

n=1

[(
nπ

d(x)

)2

− k2

]
8n(x, y)fn(x) (20)

whereh̄2k2/2m∗ = E. Multiplying the above equation by8∗
m(x, y) and integrating fory

from YL(x) to YU(x), we obtain the following equation:

d2fm(x)

dx2
=

[(
mπ

d(x)

)2

− k2

]
fm(x) −

∑
n

Vmn(x)fm(x)

−
∑

n

Umn(x)
dfm(x)

dx
m = 1, 2, . . . , N (21)

where

Vmn(x) = 2

d(x)

∫ YU (x)

YL(x)

8m(x, y)
∂28n(x, y)

∂x2
dy

Umn(x) = 4

d(x)

∫ YU (x)

YL(x)

8m(x, y)
∂8n(x, y)

∂x
dy.

(22)

Equation (21) is a system of second-order differential equations, which can be solved
by a numerical method—for example, the Adams ‘once prediction and twice correction’
method [18, 19]. At the right-hand end of the cavity, we give the boundary condition for
eiknx ; for simplicity, the origin of the coordinates can be placed at the right-hand end. Then
we integrate equation (21) by the Adams method from the right-hand end to the left-hand
end, and obtain the values of the wave functionsfm(x) and their first derivativesf ′

m(x) at
the left-hand end. From the definition of the transfer matrix, equation (5), we obtain the
matrix elements

(M1)mn = 1

2

(
fm(0) + f ′

m(0)

ikm

)
(M2)mn = 1

2

(
fm(0) − f ′

m(0)

ikm

) (23)

from the boundary condition eiknx at the right-hand end.

5. Results and discussion

In the above sections, we have proposed two methods; one is the transfer matrix method and
the other is the numerical method. In this section, we use the two methods to investigate
the electron wave propagation in several typical cavity structures and compare our results
with those obtained by the recursive Green’s function method. In all of our calculations,
the unitarity condition is satisfied within an error of 10−3.

In figure 3, we provide the results for a triangular cavity structure as shown in the inset.
The triangular cavity has symmetric geometry with respect to the two terminals, and its
length and height are 2W . The results shown as a solid line were calculated by our transfer
matrix method, and those shown as a dotted line were obtained by the recursive Green’s
function method. In the numerical calculations, we divide the cavity into 20 segments along
the longitudinal direction, and the number of the transverse modesN is chosen to be 5.
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Figure 3. The conductanceG in units of 2e2/h versus
kW/π for a triangular cavity structure calculated by our
transfer matrix method (solid line) and the recursive
Green’s function method (dotted line). A schematic
view of the structure is shown in the inset of this figure.

Figure 4. For another triangular cavity structure,
the conductanceG in units of 2e2/h versuskW/π

calculated by our transfer matrix method. A schematic
view of the structure is shown in the inset of this figure.

In the recursive Green’s function method, we construct a two-dimensional mesh with a
lattice constanta = 0.05W [8], and the maximum dimension of the matrices involved in
the computation is 40, while it is only 10 in our method. In the actual computation, we
find that our transfer matrix method is more efficient than the recursive Green’s function
method, while the results obtained by the two methods are found to be in excellent agreement
with each other. As we have seen from figure 3, we obtain the desired results by slicing
the cavity into only 20 segments, i.e., the electron transmission is not very sensitive to
geometrical features of the structure. Therefore, the effectiveness of the slicing technique
is verified in treating the electron wave propagation in complicated geometries. In figure 4,
we provide the results for another triangular cavity structure with a discontinuous potential
boundary. As the functionYU(x) for the upper boundary is not continuous, our numerical
method cannot be applied. For the structure with a discontinuous potential boundary, there
are many resonant peaks in the transmission profile due to the enhanced mode-mixing
effect [12].

Using our numerical method, we have studied the electron wave propagation in four
typical cavity structures. In the numerical calculations, we setN = 5 and find it sufficient
for obtaining the desired results [12]. We provide the results for a symmetric double-stub
structure in figure 5(a) in which the solid line is for the cavity of maximum width 2W and the
dotted line is for the cavity of maximum width 3W . Compared with the structure shown in
figure 3, the cavity considered here is not small, while we find that the transmission profiles
are simpler than that in figure 3. This phenomenon would be explained if the transverse
modes involved in the transport in the cavity are much reduced due to the symmetry of the
cavity. As the structure has symmetry with respect to the central line of the quantum wire,
the transverse states in the structure can be classified into two types: one for those with
even symmetry, the other for those with odd symmetry. If the incident electron transports
in the fundamental transverse mode in the terminal, the electron wave function has even
symmetry, and we need not take those transverse modes with odd symmetry in the cavity
into account because they do not contribute to the wave propagation. As the number of
transverse modes involved in transport in the cavity is reduced, the interference effect is not
so obvious as that in the structure shown in figure 3, and the transmission profile exhibits



3642 Wei-Dong Sheng and Jian-Bai Xia

Figure 5. (a) For a symmetric cavity structure withL = 2W , and D(x) = W {1 + b[1 +
cos(2x/L − 1)π)]}, the conductanceG in units of 2e2/h versuskW/π calculated by our
numerical method; the solid line is forb = 1 and the dotted line is forb = 1.5. A schematic
view of the structure is shown in the inset of this figure. (b) For a cavity structure with
L = 2W, D(x) = W andYL(x) = bW [1 + cos(2x/L − 1)π)], the conductanceG in units of
2e2/h versuskW/π calculated by our numerical method; the solid line is forb = 0.2 and the
dotted line is forb = 0.3. A schematic view of the structure is shown in the inset of this figure.
(c) For a cavity structure withL = 2W, YL(x) = 0 andD(x) = W {1+b[1+cos(2x/L−1)π)]},
the conductanceG in units of 2e2/h versuskW/π calculated by our numerical method (the
solid line is forb = 0.5, and the dotted line is forb = 1) and our transfer matrix method (the
chain line is forb = 0.5). A schematic view of the structure is shown in the inset of this figure.

simple structure.
In figure 5(b), we provide the results for a structure with wide–narrow–wide geometry.

Although the cavity width along the transverse direction is set to be the same as that of the
terminal, the actual width of the cavity is smaller than that of the lead. From the figure,
we can see typical transmission profiles for wide–narrow–wide geometry. In figure 5(c),
we provide the results for a structure with a sinuous cavity as shown in the inset. In the
figure, the solid line corresponds to the results for a cavity of maximum width 2W and the
dotted line to those for a larger cavity of maximum width 3W . Although the geometry of
the cavity structure considered here is not similar to the well-known T-shaped structure, we
find that there are many similarities between their transmission profiles [14], and we may
conclude that the shape dependence of the electron transmission is relatively weak. In the
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same figure, we also show the results (chain line) calculated by our transfer matrix method
for comparison. We find that the results obtained by the two different methods are in good
agreement with each other.

Figure 6. (a) A three-dimensional plot of the electron probability density (|9|2) in the triangular
cavity structure forkW/π = 1.73, T = 0.04. (b) A three-dimensional plot of the electron
probability density (|9|2) in the triangular cavity structure forkW/π = 1.57, T = 0.972.

In figures 6(a) and 6(b), we provide the three-dimensional plots of the electron
probability density (|9|2) in the triangular cavity structure for which the transmission profile
has been shown in figure 3. In the two figures, the electron is incident from the upper left.
They enable us to have further insight into the electron conduction. If the electron probability
density is known, the influence of other effects on the electron transmission would be readily
determined without further numerical calculation. For example, we want to know how a
δ-function impurity located in the cavity affects the electron wave propagation. As we
know that only in the region beside the impurity is the electron probability density much
changed, an impurity located at the site where the electron probability density reaches its
minimum would not affect the electron transmission much. If there is an impurity located
at one end of the cavity, it is almost certain that the electron transmission would be much
reduced, because there is not enough space for an electron to bypass the impurity. As can
be seen from the figures, the electron wave function would not penetrate into the upper
corner of the cavity due to the limitation of the energy of the incident electron, which is
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believed to be the main reason for which the electron wave propagation does not depend
much on the geometrical features of the structure. Actually, if the incident electron is of
very high energy, it is certain that the electron transmission is strongly dependent on the
geometrical features. Finally, we should note that the modes in the input lead and output
lead of the structure are different, because there is a reflected wave in the input lead while
there is only the outgoing wave in the output lead. As there is a phase difference ofπ

between the incoming wave and the reflected wave in the input lead, the electron probability
density is very different due to the interference of the two waves in the input lead. In figure
6(a), the interference is obvious, because the incident wave is almost totally reflected. In
figure 6(b), we have the transmission coefficientT = 0.972 and the reflection amplitude
r = √

1 − T = 0.167. Therefore the ratio of the maximum of the electron probability
density in the input lead to the minimum,(1 + r)2/(1 − r)2, is 1.96. So, the interference
effect in the input lead is also notable even when the transmission coefficient is almost equal
to 1.

In fact, the two-dimensional waveguide problem is a quantum mechanics boundary value
problem, but the boundary values at the two leads should be determined simultaneously with
the solution inside the cavity. This presents some difficulty, and several numerical methods
have been developed as mentioned in the introduction. Our method solves the problem in
real space, and obtains the transmission amplitudet and reflection amplituder along with
the wave function inside the cavity. So it provides a clear physical picture for the electron
transport and offers the possibility of taking other effects into account further—such as
those of impurities and confining potential profiles. For a cavity of complicated shape, our
method does not require construction of a two-dimensional mesh, which is time-consuming.
Besides this, our method is based on the free-electron energy band model, without the
limitation of the tight-binding model used in the recursive Green’s function method.

6. Conclusions

We have presented a transfer matrix approach for the study of electron conduction in
an arbitrarily shaped cavity structure embedded in a quantum wire. Using the boundary
conditions for wave functions, we have obtained the transfer matrix at an interface with a
discontinuous potential boundary. The total transfer matrix is calculated by multiplication
of the transfer matrix for each segment of the structure as well as numerical integration
of coupled second-order differential equations. We have applied the proposed method to
the evaluation of the conductance and the electron probability density in several typical
cavity structures. We have studied the effect of the geometrical features on the electron
transmission in detail and found that it is not obvious. In the numerical calculations, we have
found that our transfer matrix method is more efficient than other methods in the literature.
We have also found that the results are in excellent agreement with those obtained by the
recursive Green’s function method.
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